Enjoy life time everyday

スポンサーリンク

上記の広告は、30日以上更新がないブログに表示されています。
新たに記事を投稿することで、広告を消すことができます。  

Posted by のらんば長崎運営事務局 at

2017年03月31日

Three-dimensional Pixels

Researchers are now using the filaments produced by the picosecond lasers to create a path again through the fog in the lab, which may allow other types of laser beams to pass through the fog and clouds unhindered. This barrier-free access through picosecond lasers in fog or clouds has many potential applications, including free space communications, remote sensing, or more remote changes in local weather. When the filaments produced by the ultrafast 100mw laser pointer pulses pass through the fog, their attenuation is not as much as expected, because when the filament itself is blocked, it absorbs energy from the surrounding photon bath and replenishes the energy in the filament.

Femtosecond lasers produce three to four filaments, which carry about 15% of the total beam energy. The beam is imaged onto a screen and then imaged by an optical filter CCD camera that completely blocks the continuous spectrum of shorter wavelengths generated by the nonlinear optical interaction in the air, but only partially blocks the fundamental frequency The The transmittance of the light through the fog is 0.1% from 100 Hz repetition frequency and 32% at 1000 Hz. At higher transmittance, the entire beam path, not just the path of the 5mw green laser itself, is removed from the fog. The researchers assumed that the energy deposition in the droplets in the laser produces a reduced pressure (0.5 atm) channel and the resulting shock waves in the air, ejecting droplets from the laser and the larger beam path.

UAV has penetrated into various fields, but many places are used in the UAV are multi-rotor, multi-rotor UAV has its own advantages, but sometimes the shortcomings are also obvious, such as small UAV life, Resistance to wind and so on. In order to be able to make small unmanned aerial vehicles can also become the main force in the professional unmanned aerial vehicles, to perform some similar "investigation" task, UAV companies began to look on the bionic machine. The future will be used for urban monitoring, wartime investigation, wounded search and rescue and other military fields, which also includes the installation of lasers in the UAV to eliminate missiles. Laser type dragonfly UAV prototypes will be on display this summer and complete all military deployments by the end of next year.

NASA is working on a long-term technical demonstration of 1mw laser pointer communications that could eventually generate high-speed Internet between terrestrial satellite reception stations and space trajectories or spacecraft on other planets. The connection speed of the network will be far more than the speed of the existing radio frequency. Will use laser communication or photon communication. In this system, the data is encoded into a beam of light. This beam will connect the spacecraft and the antenna on the earth. Data transmission speed will be 10-100 times the existing RF system. Compared with the previous system, the system itself is smaller, lighter, and higher power. Faster speed means that scientists can get test results faster from spacecraft and improve communication between humans and astronauts on the ground. It is vital to conquer the distant stars of mankind.

The laser system will be installed on the orbiting satellites. They will convert solar energy into lasers. This technology is an innovative way of getting power to reduce dependence on hydrocarbon energy. Creating a full-color, updatable stereoscopic display is challenging because three different pixels of three colors must be formed, or three-dimensional pixels can produce stereoscopic graphics. In our display, the microbubble stereo pixel is formed by focusing the femtosecond 50mw green laser pulse in the liquid in three dimensions. The color of this bubble pattern can be colored by changing the color of the illumination light. The technology is still in the prototype stage, but the possible applications include tourist attractions. It can also be used in the military and health care fields to help doctors visualize the patient's body before surgery or learn about terrain and buildings before the soldiers perform their duties.

CO2 lasers are roughly divided into two categories. The first category is heavy industrial work, usually using the output of several kilowatts of power fast flow CO2 laser. Speed ​​is usually more important than cutting quality, so lasers for such applications will use high power, which may sacrifice beam quality, red laser pointer size and cost of ownership. The second category of the market for glass, ceramics, plastics, textiles, wood and other organic materials, precision machining, usually using the power is not higher than 1kW laser to complete. At this point, cutting quality and shape is very critical. Minimizing the size and weight of the entire system is usually a top priority because it keeps low operating costs.  
タグ :LASER


Posted by laserman at 17:50Comments(0)Technology

2017年03月25日

High Power Diode Lasers are New Trends

High-power diode lasers are based on their small size, light weight, high photoelectric conversion efficiency, long service life, high stability and reliability, and will become a new application tool and trend in the kids laser pointer industry, and in many cases, Lasers will increasingly replace CO2 lasers. At the same time, for a large number of laser products, customers are opening up more new applications, such as high-speed cladding, welding, deep penetration welding and quenching of large parts processing. For customers, they require a higher power laser, better beam quality, lower cost.

Due to the characteristics of ultra-fast laser non-thermal processing, making laser processing of low melting materials become possible, in terms of stents, such as magnesium alloy or polylactic acid and other polymer scaffold. Due to the low melting point and degradable properties of these stents, it is not possible to use post-processing of general metal brackets after cutting, so only ultrafast laser cutting can be used. Magnesium flammable and low melting point, fiber laser cutting magnesium alloy stent melting serious, a lot of heat and even produce fire phenomenon. The use of ultra-fast 500mw laser pointer cutting magnesium stent, not only did not melt, no heat processing to avoid the risk of burning.

The melting point of the polymer material is much lower than the melting point of the metal, so the polymer scaffold is more sensitive to the thermal effect. Once the degradable polymer melts and then crystallizes, its degradation rate in the human body will change, does not meet the needs of biodegradable stent. Common assessment of the quality of cutting indicators is to observe the cutting surface morphology, the ideal cutting surface for the sand surface. Unlike the metal emphasis on smooth, if polylactic acid cutting surface smooth and bright, said the polymer melted and then re-crystallization, so smooth cutting surface is unqualified. As can be seen from the above examples, ultra-fast laser cutting brackets, both in terms of ability or quality are significantly better than fiber laser. Ultra-fast laser cutting metal stent superior quality, shorten the actual stent manufacturing time. And for fiber 10 watt laser pointer can not cut the third generation of degradable stent, ultrafast laser is the ideal solution.

With the development of new technologies, lasers cover increasingly large spectrum, but some wavelengths are still not easy to achieve. This includes an ultraviolet band of about 300 nanometers, especially if a short pulse duration is to be achieved and has a high intensity. In general, UV pulse generation is usually generated by a nonlinear process, such as the generation of second harmonics or the generation of frequency, where the new photons are superimposed by summing the sum of the basic pulsed photons to give them higher energy and have a new The color formation. However, the efficiency of these processes is very low.

Now the society is everywhere in the application of laser: doctors use it to correct vision, the cashier scans your goods, quantum scientists to control the quantum bits of future quantum computers. For most applications, the current lasers are very cumbersome and are full of energy inefficient lasers, but quantum scientists need lasers that can work at very low temperatures and very small scales. For more than 40 years, they have been looking for efficient and accurate microwave lasers that will not be disturbed in very cold conditions, under quantum operating conditions. The high power laser pointer has a unique characteristic that emits a fully synchronized coherent light. This means that the line width (corresponding to the color) is very narrow A typical laser is composed of a large number of emitters (atoms, molecules or semiconductors). These conventional lasers are usually inefficient and consume a lot of heat during the lasing process. This makes it difficult for them to run at low temperatures, such as when operating a quantum computer.

Laser is still relatively young industry, every year there will be new applications, emerging markets lead the industry development, it is not like the traditional industry, with the fierce competition, the space is getting smaller and smaller. From the company focused on precision machining point of view, the future of the 30mw green laser will be higher pulse, ultra-fast direction. Playing on the PCB two-dimensional code, there are different shades of color and material differences. Quality product tracking, compared to ordinary coding machine, PCB laser coding technology more high-end, the printed information more clearly, easier to scan identification, record information is more comprehensive, more complex circumstances in the environment easier to track product.

http://www.tagtt.de/laserman123/archive/moment/3d_printing_technology-533288

http://www.pixlbit.com/blog/16385/highstrength_protective_glass

http://eyes123456.myblog.de/eyes123456/art/8886506/3D-Printing-Technology  
タグ :laser


Posted by laserman at 11:46Comments(0)Technology

2017年03月09日

Artificial Electromagnetic Materials

Artificial electromagnetic materials are material materials that control light in an unusual way at nanoscale. They can be used to develop foreign equipment such as invisible cloaks to quantum computers. But the problem is that the metamaterials they use usually contain metals that absorb energy from light and convert it into heat. As a result, a portion of the optical signal is wasted, reducing the efficiency of the device. A photonics laser research team led by Shaya Fainman, an electrical engineering professor at the University of California, San Diego, demonstrated the use of metallic materials that add excitation light to compensate for these optical losses, an optical semiconductor.

With the continuous development of laser technology and maturity, high powered laser pointer equipment has been widely used in all walks of life, such as laser marking machine, laser welding machine, laser drilling machine and laser cutting machine, etc., especially CNC burning laser pointer cutting machine Equipment, in the rapid development of the past few years, is widely used in sheet metal, metal products, steel structures, precision machinery, auto parts, glasses, jewelry, nameplate, advertising, crafts, electronics, toys, packaging and other industries. Cutting speed, cutting quality, high precision; slit narrow, smooth cutting surface, does not damage the workpiece; not affected by the shape of the workpiece, the workpiece is not affected by the shape of the workpiece, Saving materials, more effective cost savings; simple, safe, stable performance, improve the new products. In addition to the metal material processing, Development speed, with a wide range of adaptability and flexibility.

Laser marking machine advantages: laser beam mode is good, the electro-optical conversion efficiency, low power consumption, maintenance-free; some optoelectronic measurement equipment manufacturers measuring the laser light source from the initial He-Ne burning laser pen diode laser to obtain The best machine life (He-Ne laser life is generally 10 ^ 4HR, and diode laser life is 10 ^ 5HR, a difference of ten times), especially suitable for on-site long-time operation; instantly can achieve the role of switches, suitable for communication purposes.

The emergence of laser inkjet printer to a certain extent, shorten the gap between China and the developed countries in this area, but in order to really catch up with developed international, domestic enterprises must innovation, speed up technological reform. From the current customer demand, equipment maintenance rate is low, print speed, content, automatic cleaning easy, simple and quick operation will become the future development trend of Pen Maji a major trend. For the 5000mw green laser inkjet machine industry, in order to continue to grow and develop, we must take the international development path, and the international laser inkjet printer market synchronization, developed with independent intellectual property rights of new results, rapid access to R & D commercialization.

Encryption is an important part of modern life, so that sensitive information can be safely shared. In traditional encryption technology, the sender and receiver of a particular message determine the password, or the key, so only those who know the key can decrypt the information. But as computers become faster and more powerful, encryption passwords become easier to crack. Quantum cryptography guarantees "unbreakable" security by hiding information into light particles or photons emitted from the 3000mw laser pointer. In this cryptographic form, quantum mechanics is used to randomly generate a key. The sender, commonly known as Alice, sends the key by polarizing the different polarized photons. The receiver, commonly referred to as Bob, uses a photon detector to measure the polarization direction of the photon, and then the detector converts the photon into bit information, assuming that Bob uses the correct photon detector in the correct order, Get the key.

Laser cutting is a kind of high energy density controllable non-contact processing. It focuses the laser beam into a spot with a minimum diameter of less than 0.1mm, so that the power density at the focal point can exceed 107W to 108W / cm ~ 2. The irradiated material is quickly heated to the vaporization temperature and evaporated to form pores. As the 1000mw green laser beam moves relatively linearly with the material, the apertures are continuously formed with slits of about 0.1 mm in width. The cutting also adds auxiliary gas to the material to be cut to accelerate the melting of the material, blown away the slag or protecting the slits from being oxidized.  
タグ :laser pointer


Posted by laserman at 20:44Comments(1)Technology